test greedy agent
This commit is contained in:
parent
84a08b08ee
commit
84cb7f4ecf
@ -1 +1,2 @@
|
|||||||
from .util import create_agent_helper
|
from .util import create_agent_helper
|
||||||
|
from .greedy import GreedyAgent
|
58
agent/greedy.py
Normal file
58
agent/greedy.py
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
from recsim.agent import AbstractEpisodicRecommenderAgent
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class GreedyAgent(AbstractEpisodicRecommenderAgent):
|
||||||
|
def __init__(self, sess, observation_space, action_space, eval_mode, summary_writer):
|
||||||
|
super(GreedyAgent, self).__init__(action_space, summary_writer)
|
||||||
|
self._num_candidates = int(action_space.nvec[0])
|
||||||
|
self._W = np.array([[3, 1.5, 0.5]] * self._num_candidates)
|
||||||
|
assert self._slate_size == 1
|
||||||
|
def begin_episode(self, observation=None):
|
||||||
|
user = observation['user']
|
||||||
|
docs = observation['doc']
|
||||||
|
if 'W' in user: # use observable W
|
||||||
|
self._W = user['W']
|
||||||
|
else:
|
||||||
|
w = []
|
||||||
|
for doc_id in docs:
|
||||||
|
w.append(docs[doc_id])
|
||||||
|
self._W = np.array(w).reshape((-1, 3))
|
||||||
|
print("agent W:", self._W)
|
||||||
|
self._episode_num += 1
|
||||||
|
return self.step(0, observation)
|
||||||
|
def step(self, reward, observation):
|
||||||
|
docs = observation['doc']
|
||||||
|
user = observation['user']
|
||||||
|
|
||||||
|
base_pr = self.calc_prs(user['time'], user['last_review'], user['history'], self._W)
|
||||||
|
# np.exp(-last_review / np.exp(np.dot(W, x))).squeeze()
|
||||||
|
max_pr = -self._num_candidates
|
||||||
|
max_id = 0
|
||||||
|
for did in docs:
|
||||||
|
doc_id = int(did)
|
||||||
|
last_review = user['last_review'].copy()
|
||||||
|
history = user['history'].copy()
|
||||||
|
last_review[doc_id] = user['time']
|
||||||
|
time = user['time'] + 1
|
||||||
|
|
||||||
|
history[doc_id][0] += 1
|
||||||
|
history[doc_id][1] += 1
|
||||||
|
pr1 = self.calc_prs(time, last_review, history, self._W)
|
||||||
|
history[doc_id][1] -= 1
|
||||||
|
history[doc_id][2] += 1
|
||||||
|
pr2 = self.calc_prs(time, last_review, history, self._W)
|
||||||
|
pr = (pr1 + pr2) / 2 - base_pr
|
||||||
|
sum_pr = np.sum(pr)
|
||||||
|
if sum_pr > max_pr:
|
||||||
|
max_pr = sum_pr
|
||||||
|
max_id = doc_id
|
||||||
|
# print("pr1", pr1)
|
||||||
|
# print("pr2", pr2)
|
||||||
|
# print("pr0", base_pr)
|
||||||
|
print(f"choose doc{max_id} with marginal gain {max_pr}")
|
||||||
|
return [max_id]
|
||||||
|
def calc_prs(self, train_time, last_review, history, W):
|
||||||
|
last_review = train_time - last_review
|
||||||
|
mem_param = np.exp(np.einsum('ij,ij->i', history, W))
|
||||||
|
pr = np.exp(-last_review / mem_param)
|
||||||
|
return pr
|
Loading…
x
Reference in New Issue
Block a user