Compare commits
1 Commits
Author | SHA1 | Date | |
---|---|---|---|
a583855e47 |
@ -2,13 +2,13 @@ from .FlashcardDocument import FlashcardDocument
|
|||||||
from recsim import document
|
from recsim import document
|
||||||
|
|
||||||
class FlashcardDocumentSampler(document.AbstractDocumentSampler):
|
class FlashcardDocumentSampler(document.AbstractDocumentSampler):
|
||||||
def __init__(self, doc_ctor=FlashcardDocument, **kwargs):
|
def __init__(self, doc_ctor=FlashcardDocument, seed=0, **kwargs):
|
||||||
super(FlashcardDocumentSampler, self).__init__(doc_ctor, **kwargs)
|
super(FlashcardDocumentSampler, self).__init__(doc_ctor, seed, **kwargs)
|
||||||
self._doc_count = 0
|
self._doc_count = 0
|
||||||
|
|
||||||
def sample_document(self):
|
def sample_document(self):
|
||||||
doc_features = {}
|
doc_features = {}
|
||||||
doc_features['doc_id'] = self._doc_count
|
doc_features['doc_id'] = self._doc_count
|
||||||
doc_features['difficulty'] = self._rng.uniform(0, 5, (1, 3))
|
doc_features['difficulty'] = self._rng.uniform(0, 3, (1, 3))
|
||||||
self._doc_count += 1
|
self._doc_count += 1
|
||||||
return self._doc_ctor(**doc_features)
|
return self._doc_ctor(**doc_features)
|
4
main.py
4
main.py
@ -17,8 +17,8 @@ tf.compat.v1.disable_eager_execution()
|
|||||||
create_agent_fn = create_agent_helper(full_slate_q_agent.FullSlateQAgent)
|
create_agent_fn = create_agent_helper(full_slate_q_agent.FullSlateQAgent)
|
||||||
|
|
||||||
ltsenv = environment.Environment(
|
ltsenv = environment.Environment(
|
||||||
FlashcardUserModel(num_candidates, time_budget, slate_size),
|
FlashcardUserModel(num_candidates, time_budget, slate_size, seed=0, sample_seed=0),
|
||||||
FlashcardDocumentSampler(),
|
FlashcardDocumentSampler(seed=0),
|
||||||
num_candidates,
|
num_candidates,
|
||||||
slate_size,
|
slate_size,
|
||||||
resample_documents=False)
|
resample_documents=False)
|
||||||
|
@ -7,13 +7,14 @@ from util import eval_result
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
class FlashcardUserModel(user.AbstractUserModel):
|
class FlashcardUserModel(user.AbstractUserModel):
|
||||||
def __init__(self, num_candidates, time_budget, slate_size, seed=0):
|
def __init__(self, num_candidates, time_budget, slate_size, seed=0, sample_seed=0):
|
||||||
super(FlashcardUserModel, self).__init__(
|
super(FlashcardUserModel, self).__init__(
|
||||||
UserResponse, UserSampler(
|
UserResponse, UserSampler(
|
||||||
UserState, num_candidates, time_budget,
|
UserState, num_candidates, time_budget,
|
||||||
seed=seed
|
seed=sample_seed
|
||||||
), slate_size)
|
), slate_size)
|
||||||
self.choice_model = MultinomialLogitChoiceModel({})
|
self.choice_model = MultinomialLogitChoiceModel({})
|
||||||
|
self._rng = np.random.RandomState(seed)
|
||||||
|
|
||||||
def is_terminal(self):
|
def is_terminal(self):
|
||||||
terminated = self._user_state._time > self._user_state._time_budget
|
terminated = self._user_state._time > self._user_state._time_budget
|
||||||
@ -52,7 +53,8 @@ class FlashcardUserModel(user.AbstractUserModel):
|
|||||||
doc_id = doc._doc_id
|
doc_id = doc._doc_id
|
||||||
W = self._user_state._W[doc_id]
|
W = self._user_state._W[doc_id]
|
||||||
if not W.any(): # uninitialzed
|
if not W.any(): # uninitialzed
|
||||||
self._user_state._W[doc_id] = W = doc.base_difficulty * np.random.uniform(0.5, 2.0, (1, 3)) # a uniform error for each user
|
error = self._user_state._doc_error[doc_id] # a uniform error for each user
|
||||||
|
self._user_state._W[doc_id] = W = doc.base_difficulty * error
|
||||||
print(W)
|
print(W)
|
||||||
# use exponential function to simulate whether the user recalls
|
# use exponential function to simulate whether the user recalls
|
||||||
last_review = self._user_state._time - self._user_state._last_review[doc_id]
|
last_review = self._user_state._time - self._user_state._last_review[doc_id]
|
||||||
@ -60,6 +62,6 @@ class FlashcardUserModel(user.AbstractUserModel):
|
|||||||
|
|
||||||
pr = np.exp(-last_review / np.exp(np.dot(W, x))).squeeze()
|
pr = np.exp(-last_review / np.exp(np.dot(W, x))).squeeze()
|
||||||
print(f"time: {self._user_state._time}, reviewing flashcard {doc_id}, recall rate = {pr}")
|
print(f"time: {self._user_state._time}, reviewing flashcard {doc_id}, recall rate = {pr}")
|
||||||
if np.random.rand() < pr: # remembered
|
if self._rng.random_sample() < pr: # remembered
|
||||||
response._recall = True
|
response._recall = True
|
||||||
response._pr = pr
|
response._pr = pr
|
@ -7,9 +7,13 @@ class UserSampler(user.AbstractUserSampler):
|
|||||||
num_candidates=10,
|
num_candidates=10,
|
||||||
time_budget=60,
|
time_budget=60,
|
||||||
**kwargs):
|
**kwargs):
|
||||||
self._state_parameters = {'num_candidates': num_candidates, 'time_budget': time_budget}
|
|
||||||
super(UserSampler, self).__init__(user_ctor, **kwargs)
|
super(UserSampler, self).__init__(user_ctor, **kwargs)
|
||||||
|
doc_error = self._rng.uniform(0.5, 1.5, (num_candidates, 3))
|
||||||
|
self._state_parameters = {
|
||||||
|
'num_candidates': num_candidates,
|
||||||
|
'time_budget': time_budget,
|
||||||
|
'doc_error': doc_error
|
||||||
|
}
|
||||||
|
|
||||||
def sample_user(self):
|
def sample_user(self):
|
||||||
return self._user_ctor(**self._state_parameters)
|
return self._user_ctor(**self._state_parameters)
|
@ -3,13 +3,14 @@ import numpy as np
|
|||||||
from gym import spaces
|
from gym import spaces
|
||||||
|
|
||||||
class UserState(user.AbstractUserState):
|
class UserState(user.AbstractUserState):
|
||||||
def __init__(self, num_candidates, time_budget):
|
def __init__(self, num_candidates, time_budget, doc_error):
|
||||||
self._cards = num_candidates
|
self._cards = num_candidates
|
||||||
self._history = np.zeros((num_candidates, 3))
|
self._history = np.zeros((num_candidates, 3))
|
||||||
self._last_review = np.repeat(-1.0, num_candidates)
|
self._last_review = np.repeat(-1.0, num_candidates)
|
||||||
self._time_budget = time_budget
|
self._time_budget = time_budget
|
||||||
self._time = 0
|
self._time = 0
|
||||||
self._W = np.zeros((num_candidates, 3))
|
self._W = np.zeros((num_candidates, 3))
|
||||||
|
self._doc_error = doc_error
|
||||||
super(UserState, self).__init__()
|
super(UserState, self).__init__()
|
||||||
def create_observation(self):
|
def create_observation(self):
|
||||||
return {'history': self._history, 'last_review': self._last_review, 'time': self._time, 'time_budget': self._time_budget}
|
return {'history': self._history, 'last_review': self._last_review, 'time': self._time, 'time_budget': self._time_budget}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user